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Unnatural enantiomer of adilactone antibiotic (-)-antimycin A3 and its deformylamidodehydroxy analog were 
synthesized using chelation controlled alkylation as a key step. (-)-Antimycin A3 and its analog hardly showed 
antimicrobial activity compared with natural antimycin A complex. The formal synthesis of natural (+)-antimycin 
A3 is also achieved. 

Introduction 

A series of antibiotic antimycins have been isolated from various Streptomyces species since 1946 (1). The 

curious dilactone structure and strong biological activities has inspired many scientists to investigate their 

structure activity relationships, mechanism of action (2) and chemical synthesis (3-5). In our previous 

communication (6), the inhibition of electron transport of rat liver mitochondria by synthetic unnatural (-)-

antimycin A3 (-)-1 and the comparison of the activity between natural (+)-1 and (-)-1 were reported. In this 

paper, we describe the total synthesis of (-)-1 and its deformylamidodehydroxy analog (-)-2, and the formal 

synthesis of (+)-1. 
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Results and Discussion 
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Scheme 1 shows the construction of dilactone skeleton of antimycin A3. Aldehyde 3 (5) derived from ethyl 

(S)-lactate was treated with allylic stannyl compound under chelation control (MgBrg) to give all-synproduct 4 

(7,8). The ratio of 4 to other diastereomers was 95:5 (65% and 3.4% isolated yields, respectively). This 

selectivity decreased in the case of the corresponding THP and EE ethers (ca. 85:15) instead of MOM. The 

hydroxyl group of 4 was protected as benzyl ether and the MOM ether was cleaved to afford 5. The formed 

hydroxyl group of 5 was substituted with 3,5-dinitrobenzoic acid by Mitsunobu condition, and the resulting 

DNB ester was hydrolyzed to give 6. The hydroxy group of 5 was completely inverted. Then threonine 

residue 7 (9) was coupled with 6 to afford 8 in 87% yield. Direct introduction of 7 to 5 by Mitsunobu reaction 

failed in low yield of the desired product. The double bond of 8 was cleaved to give Kinoshita's intermediate 

9 (3). This compound 9 was converted to dilactone (-)-1 0 (10). In addition, natural enantiomer (+)-1 0 was 

also prepared from ethyl (Ft)-lactate by the same procedure as described for (-)-1 0 (10). (->-1 0 was 
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converted to the unnatural enantiomer, (-)-antimycin A3(-)-1 according to Kinoshita's procedure (3,11), and 

also to deformylamidodehydroxyantimycin A3(-)-2 (12) (Scheme 2). 

Antifungal activity of (-)-1 and (-)-2 was investigated. Compared with natural antimycin mixture, unnatural 

compounds, (-)-1 and (-)-2, scarcely inhibited the growth of Saccharomyces cereviciae. This follows our 

previous findings (6), that is, the configuration of the dilactone ring system plays important rolls in expressing 

the activities of antimycins. 

(-)-antimycin A3 (-)-1 

2) isovaleroyl chloride, Py 
(85%) 

deformylamidodehydroxyantimycin A3 (-)-2 

Scheme 2. Synthesis of (-)-antimycin A3 and its analog. 

Conclusion 

In conclusion, the formal syntheses of (+)-antimycin A3 (+)-1 and the total synthesis of (-)-1 and its 

deformylamidodehydroxy analog (->-2 were achieved. The total yield of Kinoshita's intermediate 9 from the 

lactate derivative 3 was 26% in 8 steps. Our synthesis was superior to the previous ones in view of the 

availability of the starting material and the selectivity of the key tin catalyzed alkylation reaction. The unnatural 

enantiomers (-)-1 and (-)-2 scarcely inhibited the growth of Saccharomyces cereviciae. 
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